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1 Introduction

The last meeting of the Adaptive Management Conference Series (April 2003, Laurel,
Maryland) ended with considerable discussion and confusion about similarities and differ-
ences in the optimal decisions obtained using Bayesian updating and stochastic dynamic
programming. Although both of these approaches are capable of solving Markov decision
problems, there are subtle differences in the nature of the solutions, which we believe may be
safely ignored when decision making is practiced in an adaptive manner (either passively or
actively). Here, we use a simple Markov decision problem to illustrate theoretical and em-
pirical differences in the optimal solutions obtained with Bayesian updating and stochastic
dynamic programming.
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2 A Markov Decision Problem

2.1 Model of state dynamics

Let Y = {0, 1} denote a discrete state space, and consider an observable sequence of
states, y = (y0, y1, . . . , yT ), where yt ∈ Y . Assume that the temporal dynamics are governed
by the following Markov process (Bonney, 1987):

f(yt | xt−1, yt−1) =
exp(ytηt−1)

1 + exp(ηt−1)
(1)

ηt−1 = (1− xt−1)α1 + xt−1α2 + (2yt−1 − 1)β

where xt−1 ∈ {0, 1} denotes a management action taken at time t − 1, and α1, α2, and β
are known parameters. Thus, (1) specifies a set of state- and action-dependent transition
probabilities:

Action yt = 1 yt = 0

“do nothing” yt−1 = 1 exp(α1+β)
1+exp(α1+β)

1
1+exp(α1+β)

m
xt−1 = 0 yt−1 = 0 exp(α1−β)

1+exp(α1−β)
1

1+exp(α1−β)

“manage” yt−1 = 1 exp(α2+β)
1+exp(α2+β)

1
1+exp(α2+β)

m
xt−1 = 1 yt−1 = 0 exp(α2−β)

1+exp(α2−β)
1

1+exp(α2−β)

where x = 0 denotes an absence of management (i.e., “do nothing”) and x = 1 denotes
the alternative action (i.e., “manage”). Note that the model parameters have simple inter-
pretations. α1 represents the effect of management action x = 0 on system state, and α2

represents the effect of management action x = 1 on system state. In contrast, β represents
serial dependence in system state. The odds that yt = 1 increase by eβ if yt−1 = 1; the odds
that yt = 1 decrease by e−β if yt−1 = 0.

2.2 Valuing the consequences and costs of management

Suppose a sequence of T management actions x = (x0, x1, . . . , xT−1) may be selected and
a corresponding sequence of system states y = (y0, y1, . . . , yT ) is observable. Let U(x,y)
denote a scalar-valued utility function that provides the basis for comparing an observed
sequence of system states, which, in part, reveal the consequences of a selected sequence
of management actions (as in (1)). In many decision problems U(x, y) is simply a sum of
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time-dependent utilities

U(x,y) =
T∑

t=1

U(xt−1, yt) (2)

where U(xt−1, yt) denotes the value of selecting management action xt−1 and observing its
consequences (state yt). As an example, assume the following utilities for U(xt−1, yt):

xt−1 yt = 1 yt = 0
0 1.0 0.0
1 0.8 -0.2

Given our definition of management actions, these utilities are consistent with the notion
that y = 1 corresponds to a “favorable” state and y = 0 corresponds to an “unfavorable”
state. For example, the highest utility is obtained if a favorable state is observed at time
t (yt = 1) after doing nothing at time t − 1 (xt−1 = 0). Likewise, there is zero utility
when failing to manage at time t − 1 (xt−1 = 0) results in an unfavorable state at time t
(yt = 0). Management usually involves some cost; therefore, the lowest utility is obtained if
an unfavorable state is observed at time t (yt = 0) after managing at time t− 1 (xt−1 = 1).

2.3 Management objective

Suppose an initial system state y0 is observed, and we seek a procedure for sequentially
selecting T management actions in a manner that maximizes the total utility (summing
over time) expected to result from those actions. Clearly, this procedure must depend on
the model-based predictions of state dynamics (described in Section 2.1) and on the utility
function U(x,y) (described in Section 2.2) for valuing the costs and predicted consequences
(states) of the proposed actions. Given the time- and state-dependence inherent in Markov
decision problems, procedures that satisfy our management objective are necessarily adap-
tive, allowing different actions to be selected based on the observed trajectory of system
states. Such procedures are known as closed-loop control strategies (Intriligator, 1971) and
differ from open-loop control strategies, which specify an optimal sequence of management
actions using only the initial (observed) state of the system.

3 Optimal solutions

3.1 Stochastic dynamic programming

Stochastic dynamic programming (SDP) is a popular method for solving Markov decision
problems (Puterman, 1994). SDP relies on a backward-induction algorithm to calculate an
optimal control strategy or policy, which includes both time- and state-dependent optimal
actions for the entire sequence of decisions. The backward-induction algorithm begins at the
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end of the sequence and for each state determines that action which produces the highest
expected utility given the model of state dynamics and the utility function. The next stage
of the algorithm considers the previous time step and determines for each state that action
which produces the highest expected sum of current and future utilities, assuming that
optimal state-dependent actions are always selected in future time steps. Backward-induction
continues this process by considering each of the earlier decisions in succession and ends by
computing the optimal state-dependent actions for the initial decision at time 0. The result
is an optimal policy of time- and state-dependent actions.

Given the model of state dynamics specified in (1) and the additive utility function
specified in (2), the first step of the backward-induction algorithm may be expressed as
follows:

U(x∗T−1 | yT−1) = max
xT−1

E(yT |xT−1,yT−1) [U(xT−1, yT )] (3)

= max
xT−1

1∑
yT =0

U(xT−1, yT ) f(yT | xT−1, yT−1) (4)

where the subscript (yT | xT−1, yT−1) indicates that expectation occurs over the distribution
of states predicted for time T conditioned on the previous state and on the management
action proposed for time T − 1. Thus, x∗T−1 | yT−1 denotes the optimal state-specific man-
agement action at time T − 1, the end of the decision sequence. The remaining steps of the
backward-induction algorithm are computed recursively

U(x∗t−1 | yt−1) = max
xt−1

E(yt|xt−1,yt−1)

[
U(xt−1, yt) + U(x∗t | yt)

]
(5)

and produce a time-ordered array of optimal, state-dependent management actions at times
T − 2, T − 3, . . . , 0.

3.2 Bayesian updating

Bayesian updating is an inherently adaptive procedure that provides a coherent frame-
work for decision making in problems of natural resource management (Dorazio and Johnson,
2003). In principle, Markov decision problems may be solved using a combination of Bayesian
updating and backward induction (Carlin, Kadane, and Gelfand, 1998; Müller, 1999; Müller,
Berry, Grieve, Smith, and Krams, 2000); however, in practice, even simple problems demand
an enormous number of calculations, often exceeding the capabilities of modern computers.
Here, we describe a procedure for solving Markov decision problems that uses Bayes Theo-
rem to adaptively update an open-loop control strategy. In Section 4 we demonstrate that
this procedure yields a closed-loop control strategy that approximates the optimal solution
provided by SDP.
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Consider the expected utility of an entire sequence of proposed management actions.
This expectation, which we denote by U(x | y0), averages over the distribution of predicted
system states given the model of state dynamics and the initial (observed) state y0. By
definition, this utility is:

U(x | y0) = E(y1,...,yT |x0,...,xT−1,y0) [U(x, y)] (6)

where the subscript (y1, . . . , yT | x0, . . . , xT−1, y0) indicates the joint distribution of predicted
states conditioned on the initial state and the proposed sequence of management actions.

If U(x,y) is a sum of time-dependent utilities (as in (2)), considerable simplification of
(6) is possible in Markov decision problems, where the joint density of predicted states may
be expressed as a product of conditional densities. For example, consider a problem involving
a sequence of 2 management actions where the state dynamics are governed by the Markov
process defined in (1). In this problem the joint density of states predicted at times 1 and 2
is

f(y1, y2 | x0, x1, y0) = f(y1 | x0, y0) f(y2 | x1, y1). (7)

Combining this joint density with the utility function in (2) yields the expected utility
(defined in (6)) of management actions (x0, x1):

U(x0, x1 | y0) = E(y1,y2|x0,x1,y0) [U(x0, y1) + U(x1, y2)] (8)

=
1∑

y1=0

1∑
y2=0

[U(x0, y1) + U(x1, y2)] f(y1, y2 | x0, x1, y0) (9)

Substituting the right-hand-side of (7) for the joint density function in (9) and simplifying
yields

U(x0, x1 | y0) =
1∑

y1=0

[
U(x0, y1) +

1∑
y2=0

U(x1, y2) f(y2 | x1, y1)

]
f(y1 | x0, y0) (10)

= E(y1|x0,y0)

[
U(x0, y1) + E(y2|x1,y1)[U(x1, y2)]

]
(11)

A similar derivation provides the expected utility of a sequence of 3 management actions

U(x0, x1, x2 | y0) = E(y1|x0,y0)

[
U(x0, y1) + E(y2|x1,y1)

[
U(x1, y2) + E(y3|x2,y2)[U(x2, y3)]

]]
(12)

It is obvious from inspection of (11) and (12) that evaluation of the expected utility of
a sequence of management actions simplifies to a sequence of nested calculations because
the expected utility of a management action at time t is nested within the expected utility
of a management action at time t − 1. This is a general characteristic of Markov decision
problems whose utility function is a sum of time-dependent utilities.
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Initially (at t = 0), the optimal sequence of management actions maximizes the expected
utility of the entire sequence of actions. For example, in a problem involving only T = 2
decisions, the expectation in (11) may be used to express the optimal solution

U(x∗0, x
∗
1 | y0) = max

x0,x1

E(y1|x0,y0)

[
U(x0, y1) + E(y2|x1,y1)[U(x1, y2)]

]
(13)

where x∗0, x
∗
1 | y0 denotes the optimal sequence of actions. Note that (13) specifies an open-

loop control strategy that conditions only on the initial state y0. However, adherence to a
Bayesian approach demands that this strategy be updated as new information is acquired
over time, and Bayes Theorem provides the formal mechanism for updating. For example,
continuing with the problem of T = 2 decisions, suppose management action x0 = x∗0 is
selected at t = 0 and the next system state y1 is observed. Then the new observations
(x0, y1) are used to update both our belief about the model parameters (α1, α2, and β) as
summarized in their posterior distribution and the predictive distribution of future states
(y2 | x1, y1, x0, y0), which integrates over posterior uncertainty in the model parameters.
These updated distributions are then used to compute the optimal state-dependent action
x∗1 | y1, x0, y0 at time t = 1 as follows:

U(x∗1 | y1, x0, y0) = max
x1

E(y2|x1,y1,x0,y0) [U(x1, y2)] (14)

Therefore, at each decision time, maximization of the expected utility of a sequence of
proposed management actions yields an open-loop control strategy; however, by updating the
model parameters and its predictions at each time step and by conditioning on the observed
state at each time step, we effectively generate a closed-loop control strategy that adapts to
the observed consequences (changes in state) and costs of the management actions that are
actually selected.

Strictly speaking, the optimal solutions provided by SDP and Bayesian updating are dif-
ferent. However, when the optimal Bayesian decisions are updated adaptively (as described
in the previous 2 paragraphs), there are few practical differences between the two solutions.
In addition, the similarity in these solutions is partially attributed to a strong similarity in
their objective functions. For example, substituting right-hand-side of (3) into the recursive
formula (5) used in backward induction yields

U(x∗t−1 | yt−1) = max
xt−1

E(yt|xt−1,yt−1)

[
U(xt−1, yt) + max

xt

E(yt+1|xt,yt) [U(xt, yt+1)]
]

(15)

which is equivalent to

U(x∗0 | y0) = max
x0

E(y1|x0,y0)

[
U(x0, y1) + max

x1

E(y2|x1,y1) [U(x1, y2)]
]

(16)

in a problem of T = 2 decisions. Note the similarity between (16) and the optimal sequence
of actions computed using Bayesian updating (13). Both objective functions include a time-
ordered nesting of conditional expectations. The primary difference is that in (13) only
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one maximization is computed over the entire sequence of management actions, whereas in
(16) there is a time-ordered nesting of maximizations that automatically yields a closed-loop
control strategy.

4 Numerical Examples

In this section numerical examples are used to illustrate the theoretical results developed
in Section 3.

4.1 Example 1

Suppose an optimal policy for a sequence of T = 5 decisions is required and the pa-
rameters in the model of state dynamics (Section 2.1) are known: α1 = 0, α2 = 1, and
β = 0.5. For these parameter values a decision to implement management action x = 1 is
expected to increase the odds that y = 1 to a greater extent than a decision to implement
management action x = 0, and the effects of serial dependence on changes in system state
are expected to be intermediate in magnitude relative to the effects of the management ac-
tions. We also assume in this example that the optimal policy maximizes the sum of state-
and action-dependent utilities (described in Section 2.2) that are expected to result from the
sequence of actions. Table 1 contains a sequence of optimal state-dependent management
actions computed using SDP. Notice that the optimal policy appears relatively insensitive
to system state, recommending action x = 1 at almost every decision time. The reason, of
course, is because higher utilities are realized if yt = 1 and the transitional probabilities of
achieving this state are higher for action xt−1 = 1 (0.62 and 0.82) than for action xt−1 = 0
(0.38 and 0.62), regardless of whether the current state yt−1 is 0 or 1.

To compute an optimal sequence of management actions using Bayesian updating, the
prior distribution of model parameters is assumed to have a point mass at the values α1 = 0,
α2 = 1, and β = 0.5, which were specified earlier. Therefore, predictions of state dynamics
can ignore any uncertainty in these values (at least initially at time t = 0). The optimal
sequence of management actions computed using Bayesian updating is insensitive to the
initial system state y0 and recommends management action x = 1 at each of the 5 decision
times (Table 2). This policy is obviously consistent with that computed using SDP. In fact,
the expected utilities summed over the sequence of optimal management actions are nearly
identical when we compare SDP vs Bayesian updating (2.6831 vs 2.6793 for y0 = 0, 2.9255
vs 2.9217 for y0 = 1).

For any sequence of T > 1 decisions, the backward-induction algorithm used in SDP
ensures that the expected sum of utilities associated with its optimal policy will equal or
exceed the expected sum of utilities associated with a policy of actions that does not rely on
the determination of future system states. This is the essential distinction between a closed-
loop control strategy, which requires a sequential evaluation of system state, and an open-
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Table 1: Optimal management actions and expected utilities computed using SDP. Param-
eters in the model of state dynamics are α1 = 0, α2 = 1, and β = 0.5.

x∗t | yt U(x∗t | yt)

yt t = 0 1 2 3 4 0 1 2 3 4
0 1 1 1 1 1 0.4225 0.9694 1.5376 2.1100 2.6831
1 1 1 1 1 0 0.6225 1.2035 1.7784 2.3521 2.9255

Table 2: Optimal management actions and expected utility computed using Bayesian up-
dating. Parameters in the model of state dynamics are α1 = 0, α2 = 1, and β = 0.5.

y0 x∗0, x
∗
1, . . . , x

∗
4 | y0 U(x∗0, x

∗
1, . . . , x

∗
4 | y0)

0 1 1 1 1 1 2.6793
1 1 1 1 1 1 2.9217

loop control strategy, which only requires knowledge of the initial system state (Intriligator,
1971). The optimal policy computed using Bayesian updating qualifies (at least initially) as
an open-loop control strategy because the optimal sequence of actions is based on a probable,
as opposed to an observed, sequence of future system states. Therefore, it is not surprising
that the expected sum of utilities associated with the Bayesian optimal policy (Table 2) is
lower than that computed using SDP (Table 1). Generally speaking, the magnitude of the
difference may increase with the number of decision times. Likewise, there are no differences
in the optimal policies of SDP and Bayesian updating when only T = 1 decision is considered
because both approaches condition solely on the initial (observed) state y0.

4.2 Example 2

Consider a Markov decision problem identical to that described in Section 4.1 except
that the parameters in the model of state dynamics (Section 2.1) are α1 = 0, α2 = 1, and
β = 3. Therefore, the only difference is that the effects of serial dependence on changes in
system state are expected to be high in magnitude relative to the effects of the management
actions.

Table 3 contains a sequence of optimal state-dependent management actions computed
using SDP. In contrast to the previous example, the optimal policy recommends action x = 0
(i.e., “do nothing”) at most of the decision times, with the exception that action x = 1 has
some value early in the decision sequence if yt = 0. Although higher utilities are realized if
yt = 1, the transitional probabilities of achieving this state when yt−1 = 0 are very low (0.05
and 0.12), regardless of whether management action 0 or 1 is selected at t− 1. The reason
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Table 3: Optimal management actions and expected utilities computed using SDP. Param-
eters in the model of state dynamics are α1 = 0, α2 = 1, and β = 3.

x∗t | yt U(x∗t | yt)

yt t = 0 1 2 3 4 0 1 2 3 4
0 1 1 0 0 0 0.0474 0.1378 0.2670 0.4802 0.7675
1 0 0 0 0 0 0.9526 1.8622 2.7330 3.5686 4.3747

Table 4: Optimal management actions and expected utility computed using Bayesian up-
dating. Parameters in the model of state dynamics are α1 = 0, α2 = 1, and β = 3.

y0 x∗0, x
∗
1, . . . , x

∗
4 | y0 U(x∗0, x

∗
1, . . . , x

∗
4 | y0)

0 1 1 0 0 0 0.7558
1 0 0 0 0 0 4.3724

is that the high value of β relative to α1 and α2 greatly reduces the odds of a change in
state. Of course, this also implies that if yt−1 = 1 the probabilities of remaining in this state
at time t are very high (0.95 and 0.98). In this situation the optimal management action is
xt−1 = 0 owing to the higher expected cost of implementing action xt−1 = 1.

The optimal sequence of management actions computed using Bayesian updating (Ta-
ble 4) is identical to the optimal policy computing using SDP provided no changes in state
occur from the initial (observed) state y0. Again, this agreement is not surprising given the
relatively high level of serial dependence in states. As in the previous example, the expected
utilities summed over the sequence of optimal management actions are nearly identical when
we compare SDP vs Bayesian updating (0.7675 vs 0.7558 for y0 = 0, 4.3747 vs 4.3724 for
y0 = 1).

5 Discussion

In this paper we show that the optimal solutions to Markov decision problems provided by
Bayesian updating without backward induction are open-loop control strategies, which differ
from the optimal time- and state-dependent solutions provided by SDP. However, we believe
that the differences in these solutions may be safely ignored for 2 reasons. First, a strong
similarity in the objective functions of these 2 approaches is induced by combining Markovian
state dynamics with a utility function that equals a sum of time-dependent utilities (e.g.,
compare (16) and (13)). Thus, an optimal solution computed by Bayesian updating at
the beginning of a sequence of decisions is unlikely to differ dramatically from an optimal
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policy computed using SDP. Second, and even more important, is that strict adherence
to a Bayesian philosophy effectively yields a closed-loop control strategy because the new
information obtained after making each decision is used to update both the model parameters
and the predicted consequences of current and future actions, given the observed (current)
state of the system. An advantage of Bayesian updating is that Bayes Theorem provides a
coherent procedure for updating the model parameters and its predictions as decisions are
made and as new system states are observed.

Thus far we have only described the use of Bayesian updating in Markov decision prob-
lems with discrete state spaces. However, there are other classes of decision problems of
great practical importance that may benefit by applying Bayesian approaches in their so-
lution. For example, consider problems where landscapes are manipulated for the purpose
of habitat management. These problems include spatial management units, and the col-
lection of observable states relevant to decision making may include both continuous and
discrete measurements of habitat. Furthermore, observations in different management units
(though made simultaneously) are almost certain to be more correlated as the distance be-
tween units decreases owing to similarities in vegetation and other characteristics of the
habitat. Therefore, the models of state dynamics needed in habitat management are likely
to be considerably complex. Fortunately, there are virtually no limits to the complexity of
models that can be entertained using Bayesian updating. Technological advancements in
Bayesian computation and modern computers currently permit sophisticated, hierarchical
models of spatial and temporal dependence to be fitted with relative ease (Wikle, Berliner,
and Cressie, 1998; Datta, Ghosh, and Waller, 2000).

Bayesian updating is also likely to be useful in sequential decision problems where the
relative effects of different management actions are poorly understood. In these problems
managers initially may place greater value on learning about the magnitude of these effects
than on achieving a particular management objective. These competing objectives must
be specified in the utility function, which will include both model parameters (to quantify
learning) and model predictions of observable system states (to quantify specific manage-
ment objectives). A Bayesian treatment of this problem is reasonably straightforward. The
benefits of learning can be formulated in the utility function as a discrepancy between the
posterior distribution of model parameters and updates of the posterior computed from the
distribution of predicted outcomes associated with a proposed set of management actions.
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